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Artificial Intelligence (AI)
Computational Systems that attempt to mimic aspects of human intelligence, 
including especially the ability to learn from experience.

and Autonomy



Growing Use of Machine Learning/Artificial Intelligence in            
Safety-Critical Autonomous & Semi-Autonomous Systems 
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Growing Concerns about Safety:
• Numerous papers showing that Deep Neural Networks can be easily fooled
• Accidents, including some fatal, involving potential failure of AI/ML-based 

perception systems in self-driving cars

Source: gminsights.com



Can we address the Design & Verification Challenges 
of AI/ML-Based Autonomy                                                  

with Formal Methods?
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Challenges for Verified AI  
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System S
Environment E
Specification ϕ

YES [+ proof]
Does S || E 
satisfy ϕ?

NO 
[+ counterexample]

S. A. Seshia, D. Sadigh, S. S. Sastry.  
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

Design Correct-by-Construction?

Need to Search Very 
High-Dimensional Input 
and State Spaces

https://arxiv.org/abs/1606.08514


Need Principles for Verified AI

Challenges
1. Environment (incl.    

Human) Modeling
2. Formal Specification

3. Learning Systems 
Representation

4. Scalable Training,    
Testing, Verification

5. Design for Correctness

Principles

?
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.

http://learnverify.org/VerifiedAI



Scenic

S. A. Seshia 7

VerifAI
High-Level, Probabilistic Programming 
Language for Modeling Environment Scenarios

Requirements Specification + Algorithms 
for Design, Verification, Testing, Debugging

https://github.com/BerkeleyLearnVerify/Scenic   
https://github.com/BerkeleyLearnVerify/VerifAIOpen-Source Tools

Industry Academia Government/
Regulators

for

Improve assurance 
of the systems you 
build

Use these tools in 
your research

Evaluate the safety 
of AI-based 
autonomous systems

CommunityShare Scenarios and Metrics Develop Corpus of Tools and Data



Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification 
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion
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SCENIC: Environment Modeling and Data Generation
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• Scenic is a probabilistic programming language defining distributions over scenes/scenarios
• Use cases: data generation, test generation, verification, debugging, design exploration, etc.

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 2018, PLDI 2019.]

Image 
created 
with 
GTA-V

Video 
created 
with 
CARLA

Example: Badly-parked car



SCENIC: Environment Scenario Modeling Language
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Scenic makes it possible to specify broad scenarios with complex structure, 
then generate many concrete instances from them automatically:

Platoons Bumper-to-Bumper Traffic

(~20 lines of Scenic code)



Example: a Badly-Parked Car
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Example: a Badly-Parked Car
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Example: a Badly-Parked Car
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Example: a Badly-Parked Car
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Example: a Badly-Parked Car
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Example: a Badly-Parked Car
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uniform 
distribution over 

this interval 

angled left or right 
uniformly at random



Example: a Badly-Parked Car
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specify offset in 
meters



Example: a Badly-Parked Car
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Example: a Badly-Parked Car, Rendered with GTA-V
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Domain-Specific Sampling Techniques

20

• Prune infeasible parts 
of the space by 
dilating polygons

require distance to taxi <= 5
require 15 deg <= (relative

heading of taxi) <= 45 deg



Early Applications of Scenic

• Exploring system performance
– Generating specialized test sets

• Debugging a known failure
– Generalizing in different directions

• Designing more effective training sets
– Training on hard cases

21

[see PLDI’19 paper]



VERIFAI: A Toolkit for the Design and Analysis of AI-Based 
Systems [CAV 2019] https://github.com/BerkeleyLearnVerify/VerifAI

Semantic 
Feature 
Space

Search Monitor

Simulator

Error 
Analysis

System

Environment 
(Scenic pgm)

Specification

Falsification

Data Augmentation/ Retraining

Parameter
Synthesis

Fuzz Testing

Failure Analysis

VERIFICATION

DEBUGGING

SYNTHESIS

AUTONOMOUS DRIVING AIRCRAFTROBOTICS
22

https://github.com/BerkeleyLearnVerify/VerifAI


Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification 
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion
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Simulation-based Falsification: Logical Formulas to 
Objective Functions

• Use Temporal Logics with Quantitative Semantics (STL, MTL, 
etc.)

• Example: 
𝑮𝑮[0,𝜏𝜏](dist(vehicle, obstacle) > 𝛿𝛿) 

inf[0,𝜏𝜏] [ dist(vehicle, obstacle) - 𝛿𝛿 ] 

• Verification  Optimization
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Falsification in VerifAI
• Input space is Semantic Feature Space

– E.g. variables in Scenic program with their value domains / distributions

• Multi-Modal Specification 
– Metric/Signal Temporal Logic
– Cost Function
– Custom monitor function <Your formalism here>

• Several Sampling/Optimization Techniques
– Passive Sampling: Uniform Random, Grid, Halton, Scenic, …
– Active Sampling/Optimization: Bayesian Optimization, Cross Entropy, 

Simulated Annealing, Multi-Armed Bandit, …
– <Your falsification method here>

• Parallelized and Multi-Objective Falsification (new feature @ RV’21)
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Case Study: Falsifying a Collision-Avoidance System
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Ego Car (AV) Broken Car
Cones

Lane 
Keeping

Lane 
Change

d

d < 15

lane change
complete
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Using Scenic to Generate Initial Scenes
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• A scene can be the initial condition for a 
simulation

• Can also include parameters for controllers
(e.g. reaction time, how quickly to swerve)



Using Scenic to Generate Initial Scenes
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Using Scenic to Generate Initial Scenes
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Using Scenic to Generate Initial Scenes
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Falsification



d = 30 
Incorrectly detected 14.5

Fix the controller:
Update model assumptions 

and re-design controller 

v < 15
Violates controller 

assumptions

Retrain the perception module:
Collect the counter-example images and 

retrain the network [IJCAI’18]
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Analyzing the Failure: Repair and Retraining



Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification 
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion
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Going Beyond Initial Conditions

• Scenic can also describe dynamic agents which take actions over 
time, reacting to a changing environment

• Example: ”a badly-parked car, which suddenly pulls into the road as 
the ego car approaches”

• The dynamic actions of the car are specified by giving it a behavior

34



Behaviors and Actions

• Behaviors are functions running 
in parallel with the simulation, 
issuing actions at each time step
– e.g. for AVs: set throttle, set 

steering angle, turn on turn signal

– Provided by a Scenic library for the 
driving domain

– Abstract away details of simulator 
interface

• Behaviors can access the state
of the simulation and make
choices accordingly

35

Scenic Simulator

Behavior 1

Behavior N

…
actions

state

LGSVL,
CARLA,

…



More Advanced Temporal Constructs

• Interrupts allow adding special cases to behaviors without 
modifying their code

• Temporal requirements and monitors allow enforcing constraints 
during simulation
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A Worked Example

• OAS Voyage Scenario 
2-2-XX-CF-STR-CAR:02

• Lead car periodically 
stops and starts; ego 
car must brake to 
avoid collision

• Cross-platform 
scenario works in 
CARLA and LGSVL
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A Worked Example: CARLA
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A Worked Example: LGSVL
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Composing Scenarios

• Scenic allows scenarios 
to be defined modularly 
and combined into more 
complex scenarios

• Parallel, sequential, and 
more complex forms of 
composition

40



Falsification with a Dynamic Scenario

• Case study in CARLA [Fremont et al. 2021, arXiv:2010.06580]
• AV turns right at a 4-way intersection

– Traffic light turns green as AV approaches, but another car runs the light

• Semantic features: intersection, traffic light timing, car speed

41



Falsification Demo

• Using simple Newtonian physics simulator built into Scenic
• To play with it yourself:

– Install Python 3.8+ and Poetry (https://python-poetry.org/)
– git clone https://github.com/BerkeleyLearnVerify/VerifAI
– cd VerifAI; git checkout av-test-challenge; poetry install; poetry shell
– cd ..; git clone https://github.com/BerkeleyLearnVerify/Scenic
– cd Scenic; poetry install
– cd ../VerifAI/experiments
– python experiments.py --model newtonian --path intersection_01.scenic

42

https://python-poetry.org/
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/Scenic


Parallel and Multi-Objective Falsification

• New features in the VerifAI toolkit [Viswanadha et al., RV’21]
– Run simulations in parallel for substantial speedups

43

VerifAI 
Falsifier

Scenic 
Server

Monitor
Trajectory

Safety 
Violation

Scenic Program

Simulator

Simulator

Dynamic 
Simulations

×N



Parallel and Multi-Objective Falsification

• New features in the VerifAI toolkit [Viswanadha et al., RV’21]
– Falsify multiple specifications, with priorities
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Parallel and Multi-Objective Falsification

• New features in the VerifAI toolkit [Viswanadha et al., RV’21]
– Multi-armed bandit sampler trading off exploration and exploitation
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Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification 
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion
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A Full Design Iteration using Scenic & VerifAI

• In addition to discovering failures, 
VerifAI can help debug and fix them

• Industrial case study on TaxiNet, a 
NN-based taxiing system [CAV 2020]
– Modeling runway scenarios in SCENIC

– Falsifying the system, finding scenarios 
when it violates its specification

– Debugging to find distinct failures and 
their root causes

– Retraining the system to eliminate 
failures and improve performance
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TaxiNet

• Experimental autonomous aircraft
taxiing system developed by Boeing

• Neural network uses camera image
to estimate the cross-track error
– CTE = distance from centerline

• System-level spec: plane must track
centerline to within 1.5 meters

48

Neural Network

CTE estimate

Controller

Steering, throttle
controls



Modeling and Falsification

• Semantic features: time, clouds, rain, position/orientation of plane

• Falsification: out of ~4,000 simulations,
– 45% violated
– 9% left runway entirely
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Counterexample Analysis

• Falsification found several types of failures, e.g. sensitivity to time

• Follow-up experiments confirmed root cause is the plane’s shadow
50

12 pm 4 pm



Retraining

• Use VERIFAI to generate
a new training set
(same size as original)

• Obtained much better 
performance
– 17% violated 

(vs. 45%)
– 0.6% left runway entirely

(vs. 9%)

51

ORIGINAL

RETRAINED



Retraining
• Eliminated dependence on time of day

• Used cross-entropy method to learn good training distributions
52



Retraining
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• Improved handling of runway intersections, but still problematic
• Can do better using

specialized training
– Concentrate training

distribution around
hardest points
(using Scenic)

– Learn a suitable
distribution using
cross-entropy
optimization



Conclusion

• VERIFAI can be applied to realistic, industrial autonomous systems

• We used it to find bugs in TaxiNet,
diagnose them, and eliminate some
of them through more intelligent
training set design

• But not all counterexamples can
be eliminated through retraining

– How can we use the results of falsification to generate runtime monitors?
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Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification 
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
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– Case study in the X-Plane simulator
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Simplex Architecture for Run-Time Assurance

56

[Lui Sha, RTSS’98]

Already used in fault-tolerant CPS (e.g. avionics)

How do we generate the switching 
logic for the Decision Module as a 
Run-Time Monitor?



VerifAI

Falsification

Failure Analysis

Retraining

Decision Module
Generation

…

Extending VerifAI with a Generator for Decision Modules

57

Semantic 
Feature 
Space

Search Monitor

Simulator

Error 
Analysis

System

Environment 

Specification



Data-driven Monitor Generation On One Slide

• Naive approach: Generate positive and negative examples 
(negative = raise an alert).

• Goal: Generalise the negative examples to unseen traces, i.e. 
generate a decision module for raising an alert. 

• Some Challenges: 
– High-dimensional alphabet/space 
– Relevant information may not be observable/reliable at runtime
– Needs to be predictive

58



Data-driven Monitor Generation
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Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation



Data-driven Monitor Generation

60

Mapping Segmentation Disambiguation

Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation



Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Simulation data Observable data



Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

21

2

Projections

1



Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Projections

Simulation data Observable data

1 In:

Out:

Rationale: Output alphabet consists of reliably observable data

Deterministic function
per time-step
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Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Projections

Simulation data Observable data

1 In:

Out:

Rationale: Output alphabet consists of reliably observable data

Deterministic function
per time-step

21



Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

2

In:

Out:

Maps traces to output

21



Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

2

In:

Out:

Typically realized as a function with an 
internal state 

State: A B

Rationale: explicitly add relevant filters  

21



Data-driven Monitor Generation: Obtaining Traces (Mapping)
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Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

2

Projections

1 When rainy, do not include camera in observable data. 
Never include temperature  

Aggregate deviations in the past
Smoothen GPS position

21



Data-driven Monitor Generation: Obtaining Traces (Segments)
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Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment



Data-driven Monitor Generation: Obtaining Traces (Segments)
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Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment



Data-driven Monitor Generation: Obtaining Traces (Segments)
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Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment

The future satisfies a temporal property!



Data-driven Monitor Generation: Obtaining Traces (Segments)
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Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment

The future violates a temporal property!



Data-driven Monitor Generation: Obtaining Traces
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Mapping Segmentation Disambiguation

Training dataLabelled infixes

Handle duplicates: either conservatively or quantitatively



Data-driven Monitor Generation
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Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Result: Obtained finitely many positive and negative examples



Data-driven Monitor Generation
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Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Result: Obtained finitely many positive and negative examples

3 Aspects: Implementability, Quantitative Correctness, Trustworthiness



Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical -> 

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing
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Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical -> 

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing
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Data-driven Monitor Generation (Exact vs Approximate)

• Exact learning: 
– Guaranteed to be perfect on training set
– May be overfitting, no guarantees outside training set

• PAC learning:
– May be arbitrarily off (although this is unlikely)
– Typically is correct in most cases

78

VerifAI-monitor generation currently allows using 
automata learning, decision tree learning and neural network classifiers



Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical -> 

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing
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Falsification

Failure Analysis

Retraining

System (Black Box)

Environment

Specification

Monitor in the loop

VerifAI

Semantic 
Feature 
Space

Search

Decision Model Generation

Monitor

Error Analysis

Simulator
…

Simplex Architecture

Decision 
Module

TaxiNet Safe 
Controller
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Data-driven Monitor Generation
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Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Leverage work by the runtime verification community!

Result: Obtained finitely many positive and negative examples

Result: Obtained logic that increases system trustworthiness 
(based on formal & reproducible empirical evidence)



Application to TaxiNet

A controller that uses TaxiNet to 
predict distance to centerline
including a learned decision 
module

System (Black Box)

Environment

Specification

VerifAI

Semantic 
Feature 
Space

Search Monitor

Error Analysis

Simulator
Falsification

Failure Analysis

Retraining

Distance to centerline must be 
below a threshold

local_time = Range(6, 18)
cloud_type = Uniform(0, 1, 2, 3, 4, 5)
rain_percent' = Range(0,99)
ego = Plane at Range(-8, 8) @ 0

…
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Learning Decision Modules over “Static” Features
Make decision at beginning of simulation: decision made based on initial values

• Input to decision module:   Cloud type, time of day, 
initial position, initial heading



Learning Decision Modules over “Static” Features

• Input to decision module:   Cloud type, time of day, 
initial position, initial heading

Make decision at beginning of simulation: decision made based on initial values



Learning Decision Modules over  “Dynamic” Features

• Input to decision module:   Cloud type, time of day, 
initial position, initial 

heading
and current position

No Simplex

Make decision at beginning of simulation: decision made based on recent history



Learning Decision Modules over  “Dynamic” Features

• Input to decision module:   Cloud type, time of day, 
initial position, initial 

heading
and current position

With Simplex

Make decision at beginning of simulation: decision made based on recent history



• Learn decision modules from data sampled and processed with VerifAI
• Evaluate system with the monitor within VerifAI
• Plenty of open and ongoing topics: 

– Create efficient implementations from the logic described by our monitors
– Feature selection for monitors 
– Use information from scenic-program or other models
– Integrating learning

• Happy to cooperate!

87

Summary



Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification 
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion
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Scenic and VerifAI: Summary of Features and Use Cases 

• Classes, Objects, Geometry, and 
Distributions

• Local Coordinate Systems
• Readable, Flexible Specifiers
• Declarative Hard & Soft Constraints
• Externally-Controllable Parameters
• Agent Actions and Behaviors, 

Interrupts, Termination
• Monitors, Temporal Constraints
• Scenario Composition
…
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• Synthetic Data Generation
• Test Generation, Fuzz Testing
• Requirements Specification
• Falsification 
• Debugging and Error Explanation
• Data Augmentation
• Goal-Directed Parameter 

Synthesis
• Run-Time Monitor Generation
…



Documentation on Scenic and VerifAI – linked from GitHub
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Ongoing/Future Directions
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Verified Human-Robot Collaboration
Learning Specifications from Demonstrations, 
Interaction-Aware Control, etc. [IROS 2016, 
NeurIPS 2018, CAV 2020]

Run-Time Assurance
SOTER framework based on Simplex 
architecture [DSN 2019, RV 2020]

Bridging Simulation & Real World
Metrics to compare simulated vs real behaviors [HSCC 2019]
Using falsification to design real world tests [ITSC 2020]

Explaining Success/Failures of 
Deep Learning

Automated approach using 
Scenic [CVPR 2020]

Run-Time Monitoring in MDPs
monitoring partially observable 
systems with nondeterministic and 
probabilistic dynamics [CAV 2021]



Example Scenario: AV making right turn, pedestrian crossing
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Lincoln MKZ running Apollo 3.5

Snippet of Scenic program



Safety in Simulation  Safety on the Road?  [Fremont et al., ITSC 2020]
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Unsafe in simulation  unsafe on the road: 62.5%  (incl. collision)
Safe in simulation  safe on the road: 93.5%  (no collisions)

[joint work with 
American 
Automobile 
Association and 
LG Electronics]



Conclusion: Towards Verified AI/ML based Autonomy
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.

Challenges
1. Environment (incl.    

Human) Modeling
2. Specification

3. Learning Systems 
Complexity

4. Efficient Training,    
Testing, Verification

5. Design for Correctness

Core Principles

Data-Driven, Introspective, Probabilistic 
Modeling
Start with System-Level Specification, 
then Component Spec (robustness, …)
Abstraction, Semantic Representation, 
and Explanations
Compositional Analysis and Semantics-
directed Search/Training 
Oracle-Guided Inductive Synthesis; 
Run-Time Assurance

Exciting Times Ahead!!!  Thank you!
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