
Formal Analysis of AI-Based Autonomy:
From Modeling to Runtime Assurance

RV 2021 Tutorial
October 14, 2021

http://learnverify.org/VerifiedAI

Sanjit A. Seshia

UC Berkeley

Hazem Torfah Daniel J. Fremont Sebastian Junges

UC Santa Cruz Radboud University

S. A. Seshia 2

Artificial Intelligence (AI)
Computational Systems that attempt to mimic aspects of human intelligence,
including especially the ability to learn from experience.

and Autonomy

Growing Use of Machine Learning/Artificial Intelligence in
Safety-Critical Autonomous & Semi-Autonomous Systems

S. A. Seshia 3

Growing Concerns about Safety:
• Numerous papers showing that Deep Neural Networks can be easily fooled
• Accidents, including some fatal, involving potential failure of AI/ML-based

perception systems in self-driving cars

Source: gminsights.com

Can we address the Design & Verification Challenges
of AI/ML-Based Autonomy

with Formal Methods?

4

Challenges for Verified AI

S. A. Seshia 5

System S
Environment E
Specification ϕ

YES [+ proof]
Does S || E
satisfy ϕ?

NO
[+ counterexample]

S. A. Seshia, D. Sadigh, S. S. Sastry.
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

Design Correct-by-Construction?

Need to Search Very
High-Dimensional Input
and State Spaces

https://arxiv.org/abs/1606.08514

Need Principles for Verified AI

Challenges
1. Environment (incl.

Human) Modeling
2. Formal Specification

3. Learning Systems
Representation

4. Scalable Training,
Testing, Verification

5. Design for Correctness

Principles

?

S. A. Seshia 6

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016.
https://arxiv.org/abs/1606.08514.

http://learnverify.org/VerifiedAI

Scenic

S. A. Seshia 7

VerifAI
High-Level, Probabilistic Programming
Language for Modeling Environment Scenarios

Requirements Specification + Algorithms
for Design, Verification, Testing, Debugging

https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/VerifAIOpen-Source Tools

Industry Academia Government/
Regulators

for

Improve assurance
of the systems you
build

Use these tools in
your research

Evaluate the safety
of AI-based
autonomous systems

CommunityShare Scenarios and Metrics Develop Corpus of Tools and Data

Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion

8

SCENIC: Environment Modeling and Data Generation

S. A. Seshia 9

• Scenic is a probabilistic programming language defining distributions over scenes/scenarios
• Use cases: data generation, test generation, verification, debugging, design exploration, etc.

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 2018, PLDI 2019.]

Image
created
with
GTA-V

Video
created
with
CARLA

Example: Badly-parked car

SCENIC: Environment Scenario Modeling Language

S. A. Seshia 10

Scenic makes it possible to specify broad scenarios with complex structure,
then generate many concrete instances from them automatically:

Platoons Bumper-to-Bumper Traffic

(~20 lines of Scenic code)

Example: a Badly-Parked Car

11

Example: a Badly-Parked Car

12

Example: a Badly-Parked Car

13

Example: a Badly-Parked Car

14

Example: a Badly-Parked Car

15

Example: a Badly-Parked Car

16

uniform
distribution over

this interval

angled left or right
uniformly at random

Example: a Badly-Parked Car

17

specify offset in
meters

Example: a Badly-Parked Car

18

Example: a Badly-Parked Car, Rendered with GTA-V

19

Domain-Specific Sampling Techniques

20

• Prune infeasible parts
of the space by
dilating polygons

require distance to taxi <= 5
require 15 deg <= (relative

heading of taxi) <= 45 deg

Early Applications of Scenic

• Exploring system performance
– Generating specialized test sets

• Debugging a known failure
– Generalizing in different directions

• Designing more effective training sets
– Training on hard cases

21

[see PLDI’19 paper]

VERIFAI: A Toolkit for the Design and Analysis of AI-Based
Systems [CAV 2019] https://github.com/BerkeleyLearnVerify/VerifAI

Semantic
Feature
Space

Search Monitor

Simulator

Error
Analysis

System

Environment
(Scenic pgm)

Specification

Falsification

Data Augmentation/ Retraining

Parameter
Synthesis

Fuzz Testing

Failure Analysis

VERIFICATION

DEBUGGING

SYNTHESIS

AUTONOMOUS DRIVING AIRCRAFTROBOTICS
22

https://github.com/BerkeleyLearnVerify/VerifAI

Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion

23

Simulation-based Falsification: Logical Formulas to
Objective Functions

• Use Temporal Logics with Quantitative Semantics (STL, MTL,
etc.)

• Example:
𝑮𝑮[0,𝜏𝜏](dist(vehicle, obstacle) > 𝛿𝛿)

inf[0,𝜏𝜏] [dist(vehicle, obstacle) - 𝛿𝛿]

• Verification  Optimization

24

Falsification in VerifAI
• Input space is Semantic Feature Space

– E.g. variables in Scenic program with their value domains / distributions

• Multi-Modal Specification
– Metric/Signal Temporal Logic
– Cost Function
– Custom monitor function <Your formalism here>

• Several Sampling/Optimization Techniques
– Passive Sampling: Uniform Random, Grid, Halton, Scenic, …
– Active Sampling/Optimization: Bayesian Optimization, Cross Entropy,

Simulated Annealing, Multi-Armed Bandit, …
– <Your falsification method here>

• Parallelized and Multi-Objective Falsification (new feature @ RV’21)

25

Case Study: Falsifying a Collision-Avoidance System

26

Ego Car (AV) Broken Car
Cones

Lane
Keeping

Lane
Change

d

d < 15

lane change
complete

26

Using Scenic to Generate Initial Scenes

27

• A scene can be the initial condition for a
simulation

• Can also include parameters for controllers
(e.g. reaction time, how quickly to swerve)

Using Scenic to Generate Initial Scenes

28

Using Scenic to Generate Initial Scenes

29

Using Scenic to Generate Initial Scenes

30

Falsification

d = 30
Incorrectly detected 14.5

Fix the controller:
Update model assumptions

and re-design controller

v < 15
Violates controller

assumptions

Retrain the perception module:
Collect the counter-example images and

retrain the network [IJCAI’18]

32

Analyzing the Failure: Repair and Retraining

Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion

33

Going Beyond Initial Conditions

• Scenic can also describe dynamic agents which take actions over
time, reacting to a changing environment

• Example: ”a badly-parked car, which suddenly pulls into the road as
the ego car approaches”

• The dynamic actions of the car are specified by giving it a behavior

34

Behaviors and Actions

• Behaviors are functions running
in parallel with the simulation,
issuing actions at each time step
– e.g. for AVs: set throttle, set

steering angle, turn on turn signal

– Provided by a Scenic library for the
driving domain

– Abstract away details of simulator
interface

• Behaviors can access the state
of the simulation and make
choices accordingly

35

Scenic Simulator

Behavior 1

Behavior N

…
actions

state

LGSVL,
CARLA,

…

More Advanced Temporal Constructs

• Interrupts allow adding special cases to behaviors without
modifying their code

• Temporal requirements and monitors allow enforcing constraints
during simulation

36

A Worked Example

• OAS Voyage Scenario
2-2-XX-CF-STR-CAR:02

• Lead car periodically
stops and starts; ego
car must brake to
avoid collision

• Cross-platform
scenario works in
CARLA and LGSVL

37

A Worked Example: CARLA

38

A Worked Example: LGSVL

39

Composing Scenarios

• Scenic allows scenarios
to be defined modularly
and combined into more
complex scenarios

• Parallel, sequential, and
more complex forms of
composition

40

Falsification with a Dynamic Scenario

• Case study in CARLA [Fremont et al. 2021, arXiv:2010.06580]
• AV turns right at a 4-way intersection

– Traffic light turns green as AV approaches, but another car runs the light

• Semantic features: intersection, traffic light timing, car speed

41

Falsification Demo

• Using simple Newtonian physics simulator built into Scenic
• To play with it yourself:

– Install Python 3.8+ and Poetry (https://python-poetry.org/)
– git clone https://github.com/BerkeleyLearnVerify/VerifAI
– cd VerifAI; git checkout av-test-challenge; poetry install; poetry shell
– cd ..; git clone https://github.com/BerkeleyLearnVerify/Scenic
– cd Scenic; poetry install
– cd ../VerifAI/experiments
– python experiments.py --model newtonian --path intersection_01.scenic

42

https://python-poetry.org/
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/Scenic

Parallel and Multi-Objective Falsification

• New features in the VerifAI toolkit [Viswanadha et al., RV’21]
– Run simulations in parallel for substantial speedups

43

VerifAI
Falsifier

Scenic
Server

Monitor
Trajectory

Safety
Violation

Scenic Program

Simulator

Simulator

Dynamic
Simulations

×N

Parallel and Multi-Objective Falsification

• New features in the VerifAI toolkit [Viswanadha et al., RV’21]
– Falsify multiple specifications, with priorities

44

Parallel and Multi-Objective Falsification

• New features in the VerifAI toolkit [Viswanadha et al., RV’21]
– Multi-armed bandit sampler trading off exploration and exploitation

45

Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion

46

A Full Design Iteration using Scenic & VerifAI

• In addition to discovering failures,
VerifAI can help debug and fix them

• Industrial case study on TaxiNet, a
NN-based taxiing system [CAV 2020]
– Modeling runway scenarios in SCENIC

– Falsifying the system, finding scenarios
when it violates its specification

– Debugging to find distinct failures and
their root causes

– Retraining the system to eliminate
failures and improve performance

47

TaxiNet

• Experimental autonomous aircraft
taxiing system developed by Boeing

• Neural network uses camera image
to estimate the cross-track error
– CTE = distance from centerline

• System-level spec: plane must track
centerline to within 1.5 meters

48

Neural Network

CTE estimate

Controller

Steering, throttle
controls

Modeling and Falsification

• Semantic features: time, clouds, rain, position/orientation of plane

• Falsification: out of ~4,000 simulations,
– 45% violated
– 9% left runway entirely

49

Counterexample Analysis

• Falsification found several types of failures, e.g. sensitivity to time

• Follow-up experiments confirmed root cause is the plane’s shadow
50

12 pm 4 pm

Retraining

• Use VERIFAI to generate
a new training set
(same size as original)

• Obtained much better
performance
– 17% violated

(vs. 45%)
– 0.6% left runway entirely

(vs. 9%)

51

ORIGINAL

RETRAINED

Retraining
• Eliminated dependence on time of day

• Used cross-entropy method to learn good training distributions
52

Retraining

53

• Improved handling of runway intersections, but still problematic
• Can do better using

specialized training
– Concentrate training

distribution around
hardest points
(using Scenic)

– Learn a suitable
distribution using
cross-entropy
optimization

Conclusion

• VERIFAI can be applied to realistic, industrial autonomous systems

• We used it to find bugs in TaxiNet,
diagnose them, and eliminate some
of them through more intelligent
training set design

• But not all counterexamples can
be eliminated through retraining

– How can we use the results of falsification to generate runtime monitors?

54

Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion

55

Simplex Architecture for Run-Time Assurance

56

[Lui Sha, RTSS’98]

Already used in fault-tolerant CPS (e.g. avionics)

How do we generate the switching
logic for the Decision Module as a
Run-Time Monitor?

VerifAI

Falsification

Failure Analysis

Retraining

Decision Module
Generation

…

Extending VerifAI with a Generator for Decision Modules

57

Semantic
Feature
Space

Search Monitor

Simulator

Error
Analysis

System

Environment

Specification

Data-driven Monitor Generation On One Slide

• Naive approach: Generate positive and negative examples
(negative = raise an alert).

• Goal: Generalise the negative examples to unseen traces, i.e.
generate a decision module for raising an alert.

• Some Challenges:
– High-dimensional alphabet/space
– Relevant information may not be observable/reliable at runtime
– Needs to be predictive

58

Data-driven Monitor Generation

59

Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Data-driven Monitor Generation

60

Mapping Segmentation Disambiguation

Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Data-driven Monitor Generation: Obtaining Traces (Mapping)

61

Mapping Segmentation Disambiguation

Simulation data Observable data

Data-driven Monitor Generation: Obtaining Traces (Mapping)

62

Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

21

2

Projections

1

Data-driven Monitor Generation: Obtaining Traces (Mapping)

63

Mapping Segmentation Disambiguation

Projections

Simulation data Observable data

1 In:

Out:

Rationale: Output alphabet consists of reliably observable data

Deterministic function
per time-step

21

Data-driven Monitor Generation: Obtaining Traces (Mapping)

64

Mapping Segmentation Disambiguation

Projections

Simulation data Observable data

1 In:

Out:

Rationale: Output alphabet consists of reliably observable data

Deterministic function
per time-step

21

Data-driven Monitor Generation: Obtaining Traces (Mapping)

65

Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

2

In:

Out:

Maps traces to output

21

Data-driven Monitor Generation: Obtaining Traces (Mapping)

66

Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

2

In:

Out:

Typically realized as a function with an
internal state

State: A B

Rationale: explicitly add relevant filters

21

Data-driven Monitor Generation: Obtaining Traces (Mapping)

67

Mapping Segmentation Disambiguation

Filters

Simulation data Observable data

2

Projections

1 When rainy, do not include camera in observable data.
Never include temperature

Aggregate deviations in the past
Smoothen GPS position

21

Data-driven Monitor Generation: Obtaining Traces (Segments)

68

Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment

Data-driven Monitor Generation: Obtaining Traces (Segments)

69

Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment

Data-driven Monitor Generation: Obtaining Traces (Segments)

70

Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment

The future satisfies a temporal property!

Data-driven Monitor Generation: Obtaining Traces (Segments)

71

Mapping Segmentation Disambiguation

Labelled segmentsObservable data

Input segment

Input segment

Input segment

The future violates a temporal property!

Data-driven Monitor Generation: Obtaining Traces

72

Mapping Segmentation Disambiguation

Training dataLabelled infixes

Handle duplicates: either conservatively or quantitatively

Data-driven Monitor Generation

73

Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Result: Obtained finitely many positive and negative examples

Data-driven Monitor Generation

74

Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Result: Obtained finitely many positive and negative examples

3 Aspects: Implementability, Quantitative Correctness, Trustworthiness

Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical ->

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing

75

Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical ->

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing

76

Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical ->

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing

77

Data-driven Monitor Generation (Exact vs Approximate)

• Exact learning:
– Guaranteed to be perfect on training set
– May be overfitting, no guarantees outside training set

• PAC learning:
– May be arbitrarily off (although this is unlikely)
– Typically is correct in most cases

78

VerifAI-monitor generation currently allows using
automata learning, decision tree learning and neural network classifiers

Data-driven Monitor Generation: Discussion and Desiderata

• Implementability
– Realizability
– Performance
– AI systems are often computationally heavy

• Quantitative correctness
– Overapproximation (e.g. only accepting seen traces) is typically too conservative
– Quantify false positives and false negatives differently

• Trustworthiness
– Quantitative correctness statistical ->

Monitors should make the system more trustworthy
– Monitor-in-the-loop testing

79

Falsification

Failure Analysis

Retraining

System (Black Box)

Environment

Specification

Monitor in the loop

VerifAI

Semantic
Feature
Space

Search

Decision Model Generation

Monitor

Error Analysis

Simulator
…

Simplex Architecture

Decision
Module

TaxiNet Safe
Controller

80

Data-driven Monitor Generation

81

Step 1: Data preparation

Step 2: Monitor generation

Step 3: Monitor implementation

Leverage work by the runtime verification community!

Result: Obtained finitely many positive and negative examples

Result: Obtained logic that increases system trustworthiness
(based on formal & reproducible empirical evidence)

Application to TaxiNet

A controller that uses TaxiNet to
predict distance to centerline
including a learned decision
module

System (Black Box)

Environment

Specification

VerifAI

Semantic
Feature
Space

Search Monitor

Error Analysis

Simulator
Falsification

Failure Analysis

Retraining

Distance to centerline must be
below a threshold

local_time = Range(6, 18)
cloud_type = Uniform(0, 1, 2, 3, 4, 5)
rain_percent' = Range(0,99)
ego = Plane at Range(-8, 8) @ 0

…

82

Learning Decision Modules over “Static” Features
Make decision at beginning of simulation: decision made based on initial values

• Input to decision module: Cloud type, time of day,
initial position, initial heading

Learning Decision Modules over “Static” Features

• Input to decision module: Cloud type, time of day,
initial position, initial heading

Make decision at beginning of simulation: decision made based on initial values

Learning Decision Modules over “Dynamic” Features

• Input to decision module: Cloud type, time of day,
initial position, initial

heading
and current position

No Simplex

Make decision at beginning of simulation: decision made based on recent history

Learning Decision Modules over “Dynamic” Features

• Input to decision module: Cloud type, time of day,
initial position, initial

heading
and current position

With Simplex

Make decision at beginning of simulation: decision made based on recent history

• Learn decision modules from data sampled and processed with VerifAI
• Evaluate system with the monitor within VerifAI
• Plenty of open and ongoing topics:

– Create efficient implementations from the logic described by our monitors
– Feature selection for monitors
– Use information from scenic-program or other models
– Integrating learning

• Happy to cooperate!

87

Summary

Outline

• Overview of Scenic and VerifAI
– Basic syntax of the Scenic language

• Falsification
– Case study in the Webots simulator

• Dynamic Scenarios in Scenic
– Case study in autonomous driving simulators (e.g., CARLA)

• Falsification  Debugging  Retraining
– Case study in the X-Plane simulator

• Data-Driven Run-Time Monitor Generation with Scenic & VerifAI
– Case study in the X-Plane simulator

• Conclusion

88

Scenic and VerifAI: Summary of Features and Use Cases

• Classes, Objects, Geometry, and
Distributions

• Local Coordinate Systems
• Readable, Flexible Specifiers
• Declarative Hard & Soft Constraints
• Externally-Controllable Parameters
• Agent Actions and Behaviors,

Interrupts, Termination
• Monitors, Temporal Constraints
• Scenario Composition
…

S. A. Seshia 89

• Synthetic Data Generation
• Test Generation, Fuzz Testing
• Requirements Specification
• Falsification
• Debugging and Error Explanation
• Data Augmentation
• Goal-Directed Parameter

Synthesis
• Run-Time Monitor Generation
…

Documentation on Scenic and VerifAI – linked from GitHub

S. A. Seshia 90

Ongoing/Future Directions

S. A. Seshia 91

Verified Human-Robot Collaboration
Learning Specifications from Demonstrations,
Interaction-Aware Control, etc. [IROS 2016,
NeurIPS 2018, CAV 2020]

Run-Time Assurance
SOTER framework based on Simplex
architecture [DSN 2019, RV 2020]

Bridging Simulation & Real World
Metrics to compare simulated vs real behaviors [HSCC 2019]
Using falsification to design real world tests [ITSC 2020]

Explaining Success/Failures of
Deep Learning

Automated approach using
Scenic [CVPR 2020]

Run-Time Monitoring in MDPs
monitoring partially observable
systems with nondeterministic and
probabilistic dynamics [CAV 2021]

Example Scenario: AV making right turn, pedestrian crossing

S. A. Seshia 92

Lincoln MKZ running Apollo 3.5

Snippet of Scenic program

Safety in Simulation  Safety on the Road? [Fremont et al., ITSC 2020]

S. A. Seshia 93

Unsafe in simulation  unsafe on the road: 62.5% (incl. collision)
Safe in simulation  safe on the road: 93.5% (no collisions)

[joint work with
American
Automobile
Association and
LG Electronics]

Conclusion: Towards Verified AI/ML based Autonomy

S. A. Seshia 94

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016.
https://arxiv.org/abs/1606.08514.

Challenges
1. Environment (incl.

Human) Modeling
2. Specification

3. Learning Systems
Complexity

4. Efficient Training,
Testing, Verification

5. Design for Correctness

Core Principles

Data-Driven, Introspective, Probabilistic
Modeling
Start with System-Level Specification,
then Component Spec (robustness, …)
Abstraction, Semantic Representation,
and Explanations
Compositional Analysis and Semantics-
directed Search/Training
Oracle-Guided Inductive Synthesis;
Run-Time Assurance

Exciting Times Ahead!!! Thank you!

List of References

• Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Towards Verified Artificial Intelligence. ArXiv e-prints, July 2016.
• Hazem Torfah, Sebastian Junges, Daniel J. Fremont, Sanjit A. Seshia: Formal Analysis of AI-Based Autonomy: From Modeling to Runtime Assurance.

RV 2021
• Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: A Language

for Scenario Specification and Scene Generation. In Proceedings of the 40th annual ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI), June 2019.

• Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. VerifAI:
A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems. In 31st International Conference on Computer Aided
Verification (CAV), July 2019.

• Ankush Desai, Shromona Ghosh, Sanjit A. Seshia, Natarajan Shankar, and Ashish Tiwari. SOTER: A Runtime Assurance Framework for Programming
Safe Robotics Systems. In IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), June 2019.

• Daniel J. Fremont, Johnathan Chiu, Dragos D. Margineantu, Denis Osipychev, and Sanjit A. Seshia. Formal Analysis and Redesign of a Neural
Network-Based Aircraft Taxiing System with VerifAI. In 32nd International Conference on Computer Aided Verification (CAV), July 2020.

• Daniel J. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A. Seshia, Atul Acharya, Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin
Mehta. Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World. In 23rd IEEE International Conference on
Intelligent Transportation Systems (ITSC), September 2020.

• Sumukh Shivakumar, Hazem Torfah, Ankush Desai, and Sanjit A. Seshia. SOTER on ROS: A Run-Time Assurance Framework on the Robot Operating
System. In 20th International Conference on Runtime Verification (RV), October 2020.

• Kesav Viswanadha, Edward Kim, Francis Indaheng, Daniel J. Fremont, Sanjit A. Seshia: Parallel and Multi-objective Falsification with Scenic and
VerifAI. RV 2021

S. A. Seshia 95

	Formal Analysis of AI-Based Autonomy:�From Modeling to Runtime Assurance
	Slide Number 2
	Growing Use of Machine Learning/Artificial Intelligence in Safety-Critical Autonomous & Semi-Autonomous Systems
	Can we address the Design & Verification Challenges of AI/ML-Based Autonomy with Formal Methods?
	Challenges for Verified AI
	Need Principles for Verified AI
	Scenic
	Outline
	SCENIC: Environment Modeling and Data Generation
	SCENIC: Environment Scenario Modeling Language
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car
	Example: a Badly-Parked Car, Rendered with GTA-V
	Domain-Specific Sampling Techniques
	Early Applications of Scenic
	VerifAI: A Toolkit for the Design and Analysis of AI-Based Systems [CAV 2019]
	Outline
	Simulation-based Falsification: Logical Formulas to Objective Functions
	Falsification in VerifAI
	Case Study: Falsifying a Collision-Avoidance System
	Using Scenic to Generate Initial Scenes
	Using Scenic to Generate Initial Scenes
	Using Scenic to Generate Initial Scenes
	Using Scenic to Generate Initial Scenes
	Falsification
	Slide Number 32
	Outline
	Going Beyond Initial Conditions
	Behaviors and Actions
	More Advanced Temporal Constructs
	A Worked Example
	A Worked Example: CARLA
	A Worked Example: LGSVL
	Composing Scenarios
	Falsification with a Dynamic Scenario
	Falsification Demo
	Parallel and Multi-Objective Falsification
	Parallel and Multi-Objective Falsification
	Parallel and Multi-Objective Falsification
	Outline
	A Full Design Iteration using Scenic & VerifAI
	TaxiNet
	Modeling and Falsification
	Counterexample Analysis
	Retraining
	Retraining
	Retraining
	Conclusion
	Outline
	Simplex Architecture for Run-Time Assurance
	Extending VerifAI with a Generator for Decision Modules
	Data-driven Monitor Generation On One Slide
	Data-driven Monitor Generation
	Data-driven Monitor Generation
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Mapping)
	Data-driven Monitor Generation: Obtaining Traces (Segments)
	Data-driven Monitor Generation: Obtaining Traces (Segments)
	Data-driven Monitor Generation: Obtaining Traces (Segments)
	Data-driven Monitor Generation: Obtaining Traces (Segments)
	Data-driven Monitor Generation: Obtaining Traces
	Data-driven Monitor Generation
	Data-driven Monitor Generation
	Data-driven Monitor Generation: Discussion and Desiderata
	Data-driven Monitor Generation: Discussion and Desiderata
	Data-driven Monitor Generation: Discussion and Desiderata
	Data-driven Monitor Generation (Exact vs Approximate)
	Data-driven Monitor Generation: Discussion and Desiderata
	Monitor in the loop
	Data-driven Monitor Generation
	Application to TaxiNet
	Learning Decision Modules over “Static” Features
	Learning Decision Modules over “Static” Features
	Learning Decision Modules over “Dynamic” Features
	Learning Decision Modules over “Dynamic” Features
	Summary
	Outline
	Scenic and VerifAI: Summary of Features and Use Cases
	Documentation on Scenic and VerifAI – linked from GitHub
	Ongoing/Future Directions
	Example Scenario: AV making right turn, pedestrian crossing
	Safety in Simulation  Safety on the Road? [Fremont et al., ITSC 2020]
	Conclusion: Towards Verified AI/ML based Autonomy
	List of References

